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In real life applications, inverse problems, such as the electrical impedance tomography problem, usually have a limited accuracy, 
and require huge computation resources to be solved correctly. In electrical impedance tomography, the goal is to obtain the electrical 
properties of different materials (typically living tissues) by applying an electrical current and measuring the resulting potential 
difference at the boundaries of the domain. While the maximum numerical accuracy is technically limited by the size of the elements 
within the finite element mesh, using a fine mesh will result in a computationally demanding reconstruction, especially when the 
location of the target is unknown. However, this situation is different when the location of the target is known in advance. In this case, 
one can easily refine the finite element model around the target, allowing a greater accuracy around the region of interest. In this 
paper, a novel approach estimates the location of the target object before solving the inverse problem, so that it becomes possible to 
refine only a specific area of the element domain. An artificial neural network is used to determine the location of the target directly 
from voltages measured at the boundary of the domain. This location is then used to refine the mesh at this specific location, which 
increases the accuracy without significantly affect the computation resources necessary to solve the inverse problem. Since linear 
inverse solvers give a linear conductivity distribution, it was decided to use the h-method to refine the mesh around the target object.  
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I. INTRODUCTION 

LECTRICAL IMPEDANCE TOMOGRAPHY (EIT) is  the most 
recent technique used for medical imaging [1]. Given the 

electrical voltages measured at the boundaries of a domain, the 
inverse problem aims to retrieve the electrical conductivity of 
the different elements within a Finite Element (FE) model. 
Several linear and nonlinear techniques have been proposed to 
obtain this electrical conductivity [2], but most of them can 
only give an approximation of the real conductivity 
distribution. In EIT, these approximations are basically due to 
the underlying assumptions made by the linear algorithms [3], 
but also to the size of the elements in the FE model. An 
accurate 3D FE model may easily reach more than 50,000 
nodes, and then computing the inverse problem requires 
enormous computation resources. The challenge is to reduce 
the size of this problem while maintaining accuracy. 

Recently, non-linear algorithms have been proven to be 
capable of accurate EIT reconstructions [4], with a very 
limited smoothness in the resulting image. These algorithms, 
usually based on Artificial Neural Networks (ANN) or 
Evolutionary Algorithms (EA), perform well in 2D 
applications, but the additional dimension of a 3D FE model 
usually makes the training phase more challenging. Although 
it is complicated to create an accurate reconstruction, ANNs 
are still capable of giving a correct approximation of target 
size and location. Different methods to automatically refine 
the FE model have been proposed [5], but these methods are 
based on the reconstructed image, requires solving the inverse 
problem several times, with several different meshes, before 
converging to an accurate reconstruction. In 3D-EIT, this step 
can be very long, and therefore this solution is not suitable for 
real-time 3D applications. 

In this paper, an automatic method to refine 2D and 3D 
meshes without any prior reconstruction is proposed. The 

method, based on ANN, determines the locations and sizes of 
the targets directly from the voltages measured at the 
boundaries. After that, it becomes possible to refine the FE 
model before solving the inverse problem. This local 
refinement allows greater accuracy around the target 
boundaries. Given the voltages measured at the boundaries, an 
ANN gives an approximation of the size, and another ANN 
estimates the location, which is used to refine a coarse FE 
model. Then this refined mesh is used to solve the EIT inverse 
problem with a linear inverse solver. 

II. DESCRIPTION OF EXPERIMENTS 

One of the problems in 3D EIT is the large computation 
resources required to solve the inverse problem with a high 
degree of accuracy. A 3D FE model comprised of 4 layers of 8 
electrodes on the boundary was used in this experiment. Two 
adjacent electrodes in the same layer were used to inject an 
electrical current into the EIT domain, while all the other pairs 
of adjacent electrodes were being used to take the 
measurements in the same layer. This configuration allows a 
satisfactory degree of accuracy, but it has been shown that 
additional electrodes or additional independent injections can 
enhance the accuracy of the system. On the other hand, an 
accurate 3D model contains a large number of nodes, making 
the reconstruction very demanding (it usually requires several 
GB to compute). 

ANNs are powerful algorithms capable of approximating a 
solution to a non-linear problem. In this application, they were 
used to find the size and position of the target image, directly 
from the measured voltages at the boundary. To do so, a set of 
1000 EIT images, containing spherical objects with different 
sizes and different locations, was used to train the ANN. In 
EIT, the forward problem is linear and can be solved 
numerically. Its solution gives the resulting voltages at the 
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electrodes. These voltages were used to train the ANNs, using 
the gradient descent algorithm. The ANNs can then be used to 
estimate the size and location of new targets directly from the 
measured voltages. At this point, an error, defined as the 
Euclidean distance from the estimated position and the real 
position, is determined. 

Once the size and location of the target are known, it is 
possible to refine the mesh at the boundary of the object. Since 
linear inverse solvers usually generate some smoothness in the 
resulting image, it was decided to refine all the elements 
located at a certain distance from the boundary of the target. In 
both 2D and 3D models, the refinement was done by applying 
the h-method and vertex bisection. 

After refining the mesh, it is possible to solve the EIT 
inverse problem with a high degree of accuracy without 
increasing the computational resource demand significantly, 
since the dimension of the whole FE model should not be 
strongly affected by the local refinement. After solving the 
inverse problem, the conductivities obtained were mapped into 
a fine mesh, used to solve the forward problem. Although this 
final step has a limited relevance in real applications, it allows 
one to compare the results and calculate the Root Mean 
Square (RMS) error for the different images. 

III. RESULT 

Experiments were conducted for both 2D and 3D EIT. First, 
the Euclidean distance from the original location of the target 
and its estimated location was used to measure the efficiency 
of the ANN. The radius of the tank was normalized to 1. In 
this application, the Euclidean distance between these two 
points is below 0.1, meaning that the estimated location is 
close to the real location.  

After refinement, the results obtained with a coarse mesh, a 
locally refined mesh, and a fine mesh are compared. The 
computation time and required memory are compared for 
these three different configurations. As shown in Table 1, 
solving the problem with the proposed locally refined mesh is 
more than 100 times faster than solving with the fine mesh, 
and reduces the memory required by 100 times. This result can 
be explained by the number of nodes in the different FE 
models. The fine FE model used to solve the forward problem 
has more than 10000 nodes, while the locally refined meshes 
have only 499 nodes. 
 
Table 1. Comparison of reconstruction using coarse mesh, fine mesh, and 
an automatically locally refined mesh 

  Fine mesh Coarse mesh 
Proposed locally refined 

mesh 

time (s) 1090 2.9 8.1 

RMS error (%) 8.4 15.9 8.8 

Memory (Gb) 40 0.04 0.4 

# nodes 10197 98 499 

 

Finally, the resulting images were mapped into the initial 
FE model, previously used to simulate a target object and 
solve the EIT forward problem. This mapping allowed a 
comparison of the different EIT images obtained with the 

different meshes. The RMS errors show that the proposed 
method improves the quality of the reconstruction, and the 
resulting error is close to the error obtained with a completely 
fine mesh. Fig. 1 shows the conductivity distributions obtained 
with the coarse, fine, and locally refined meshes.  
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Fig. 1. Comparison of reconstructions using a coarse mesh, fine mesh, 
and a mesh refined by the proposed method 

IV. CONCLUSION 

The proposed method uses an ANN to locate the target prior 
to solving the inverse problem, using a locally refined mesh. 
This mesh can be used to solve the EIT problem in a shorter 
time and requires less computation resource while maintaining 
a high degree of accuracy. This digest introduces the idea over 
a very simple case. Future work will focus on the modelling of 
multiple targets and more realistic shapes that are very likely 
be met in real EIT applications. 
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